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(57) ABSTRACT

Operating a hypervisor includes running a hypervisor as a
thread of an underlying operating system and loading a guest
operating system using the hypervisor based on the thread of
the underlying operating system, where the hypervisor runs
independently of the guest operating system and indepen-
dently of other hypervisors running as other threads of the
underlying operating system. The hypervisor may be a first
hypervisor and operating a hypervisor may further include
running a second hypervisor nested with the first hypervisor,
where the guest operating system may be loaded using both
the first hypervisor and the second hypervisor. The underly-
ing operating system may be an operating system of a storage
system.
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1
CONTROLLING ACCESS TO RESOURCES
USING INDEPENDENT AND NESTED
HYPERVISORS IN A STORAGE SYSTEM
ENVIRONMENT

TECHNICAL FIELD

This application is related to the field of virtualized com-
puting environments and, more particularly, the use of hyper-
visors.

BACKGROUND OF THE INVENTION

Host processor systems may store and retrieve data using a
storage device containing a plurality of host interface units
(I/O modules), disk drives, and disk interface units (disk
adapters). Such storage devices are provided, for example, by
EMC Corporation of Hopkinton, Mass. and disclosed in U.S.
Pat. No. 5,206,939 to Yanai et al., U.S. Pat. No. 5,778,394 to
Galtzuret al., U.S. Pat. No. 5,845,147 to Vishlitzky et al., and
U.S. Pat. No. 5,857,208 to Ofek, which are incorporated
herein by reference. The host systems access the storage
device through a plurality of channels provided therewith.
Host systems provide data and access control information
through the channels to the storage device and the storage
device provides data to the host systems also through the
channels. The host systems do not address the disk drives of
the storage device directly, but rather, access what appears to
the host systems as a plurality of logical disk units. The
logical disk units may or may not correspond to the actual
disk drives. Allowing multiple host systems to access the
single storage device unit allows the host systems to share
data stored therein.

A hypervisor is a software implementation providing a
software virtualization environment in which other software
may run with the appearance of having full access to the
underlying system hardware, but in which such access is
actually under the complete control of the hypervisor. The
software running in such a hypervisor managed environment
may execute within a virtual machine (VM) and multiple
VMs may be managed simultaneously by a hypervisor.
Hypervisors may generally be classed as type 1 or type 2,
depending on whether the hypervisor is running in a super-
visor mode on “bare metal” (type 1) or is itself hosted by an
operating system (OS) (type 2). A bare metal environment
describes a computer system in which a VM is installed
directly on hardware rather than within a host OS. ESX and
ESXi, produced by VMware of Palo Alto, Calif., are
examples of bare-metal hypervisors that may run directly on
server hardware without requiring an additional underlying
operating system. For discussions of the use of known hyper-
visors (or “virtual machine monitors™) in virtualized comput-
ing environments, see, for example, U.S. Pat. Nos. 7,665,088;
7,743,389; and 7,945,436, which are all assigned to VMware,
Inc. and which are all incorporated herein by reference.
Although the term “hypervisor” is principally used herein,
this term should be understood herein to refer to any appro-
priate software layer having the described features and func-
tions discussed herein.

Accordingly, it would be desirable to provide a system and
techniques for advantageously operating hypervisors in con-
nection with the scheduling and sharing of resources, particu-
larly in connection with storage systems.

SUMMARY OF THE INVENTION

According to the system described herein, operating a
hypervisor includes running a hypervisor as a thread of an
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underlying operating system and loading a guest operating
system using the hypervisor based on the thread of the under-
lying operating system, where the hypervisor runs indepen-
dently of the guest operating system and independently of
other hypervisors running as other threads of the underlying
operating system. The hypervisor may be a first hypervisor
and operating a hypervisor may further include running a
second hypervisor nested with the first hypervisor, where the
guest operating system may be loaded using both the first
hypervisor and the second hypervisor. The underlying oper-
ating system may be an operating system of a storage system.
The hypervisor may be embedded with the storage system.
Operating a hypervisor may also include modifying code of
the hypervisor independently of code of the guest operating
system. Operating a hypervisor may also include modifying
code of the hypervisor independently of code of the other
hypervisors. The hypervisor may share resources with the
other hypervisors according to scheduling processes of the
underlying operating system.

According further to the system described herein, a non-
transitory computer readable medium stores software for
operating a hypervisor. The software includes executable
code that runs a hypervisor as a thread of an underlying
operating system and executable code that loads a guest oper-
ating system using the hypervisor based on the thread of the
underlying operating system, where the hypervisor runs inde-
pendently of the guest operating system and independently of
other hypervisors running as other threads of the underlying
operating system. The hypervisor may be first hypervisor, and
the software may further include executable code that runs a
second hypervisor nested with the first hypervisor, where the
guest operating system is loaded using both the first hypervi-
sor and the second hypervisor. The underlying operating sys-
tem may be an operating system of a storage system. The
hypervisor may be embedded with the storage system. The
software may further include executable code that modifies
code of the hypervisor independently of code of the guest
operating system. The software may further include execut-
able code that modifies code of the hypervisor independently
of code of the other hypervisors. The hypervisor may share
resources with the other hypervisors according to scheduling
processes of the underlying operating system.

According further to the system described herein, a system
using hypervisors includes at least one processor providing
processing resources for an underlying operating system and
a computer-readable medium storing software for operating a
hypervisor. The software includes executable code that runs
the hypervisor as a thread of the underlying operating system
and executable code that loads a guest operating system using
the hypervisor based on the thread of the underlying operat-
ing system and uses the processing resources, where the
hypervisor runs independently of the guest operating system
and independently of other hypervisors running as other
threads of the underlying operating system. The hypervisor
may be a first hypervisor, and the software may further
include executable code that runs a second hypervisor nested
with the first hypervisor, where the guest operating system is
loaded using both the first hypervisor and the second hyper-
visor. The underlying operating system may be an operating
system of a storage system. The hypervisor may be embedded
with the storage system. The at least one processor may
include at least one CPU core of the storage system. The
hypervisor may share the processing resources with the other
hypervisors according to scheduling processes of the under-
lying operating system.

According further to the system described herein, operat-
ing at least one hypervisor includes running a first hypervisor
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as a first thread of an underlying operating system, running a
second hypervisor as a second thread of the underlying oper-
ating system, loading a first guest operating system using the
first hypervisor based on the first thread of the underlying
operating system, loading a second guest operating system
using the second hypervisor based on the second thread of the
underlying operating system, and scheduling sharing of
resources of the underlying system between the first hyper-
visor and the second hypervisor according to a scheduler of
the underlying operating system, where the first hypervisor
and the second hypervisor run independently of each other.
The scheduler of the underlying operating system may sched-
ule fractional time shares for the first hypervisor and the
second hypervisor to access the same resource. The resource
may be a CPU core of a storage system operating, and where
the underlying operating system may operate the storage
system. The scheduler of the underlying operating system
may schedule fractional time shares for the first hypervisor
and the second hypervisor to access multiple resources oper-
ating in a symmetric multi-processing regime. The first
hypervisor and the second hypervisor may be part of the same
hypervisor running the first and second threads indepen-
dently. The first hypervisor and the second hypervisor may
run independently of the first and second guest operating
systems. The underlying operating system may operate a
storage system, and the first and second hypervisors may be
embedded with the storage system.

According further to the system described herein, a non-
transitory computer readable medium stores software for
operating at least one hypervisor. The software includes
executable code that runs a first hypervisor as a first thread of
an underlying operating system, executable code that runs a
second hypervisor as a second thread of the underlying oper-
ating system, executable code that loads a first guest operat-
ing system using the first hypervisor based on the first thread
of the underlying operating system, executable code that
loads a second guest operating system using the second
hypervisor based on the second thread of the underlying
operating system, and executable code that schedules sharing
resources of the underlying system between the first hyper-
visor and the second hypervisor according to a scheduler of
the underlying operating system, where the first hypervisor
and the second hypervisor run independently of each other.
Executable code that schedules sharing of the resources may
schedule fractional time shares for the first hypervisor and the
second hypervisor to access the same resource. The same
resource may include a CPU core of a storage system, and the
underlying operating system may operate the storage system.
Executable code that schedules sharing of the resources may
schedule fractional time shares for the first hypervisor and the
second hypervisor to access multiple resources operating in a
symmetric multi-processing regime. The first hypervisor and
the second hypervisor may be part of the same hypervisor
running the first and second threads independently. The first
hypervisor and the second hypervisor may run independently
of'the first and second guest operating systems. The underly-
ing operating system may operate a storage system, and the
first and second hypervisors may be embedded with the stor-
age system.

According further to the system described herein, a system
using hypervisors includes at least one processor providing
processing resources for an underlying operating system and
a non-transitory computer readable medium storing software
for operating at least one hypervisor. The software includes
executable code that runs a first hypervisor as a first thread of
an underlying operating system, executable code that runs a
second hypervisor as a second thread of the underlying oper-
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4

ating system, executable code that loads a first guest operat-
ing system using the first hypervisor based on the first thread
of the underlying operating system, executable code that
loads a second guest operating system using the second
hypervisor based on the second thread of the underlying
operating system, and executable code that schedules sharing
of'the processing resources of the underlying system between
the first hypervisor and the second hypervisor according to a
scheduler of the underlying operating system, where the first
hypervisor and the second hypervisor run independently of
each other. Executable code that schedules sharing of the
resources may schedule fractional time shares for the first
hypervisor and the second hypervisor to access the same
resource. The same resource may include a CPU core of a
storage system, and the underlying operating system may
operate the storage system. Executable code that schedules
sharing of the resources may schedule fractional time shares
for the first hypervisor and the second hypervisor to access
multiple resources in a symmetric multi-processing regime.
The first hypervisor and the second hypervisor may be part of
the same hypervisor running the first and second threads
independently. The underlying operating system may operate
a storage system, and the first and second hypervisors may be
embedded with the storage system.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the system described herein are explained
with reference to the several figures of the drawings, which
are briefly described as follows.

FIG. 11is a schematic illustration of a storage system show-
ing a relationship between a host and a storage device that
may be used in connection with an embodiment of the system
described herein.

FIG. 2 is a schematic diagram illustrating an embodiment
of'the storage device where each of a plurality of directors are
coupled to the memory.

FIG. 3 is a schematic illustration showing hardware and
software layers for a storage system, including independent
hypervisors as threads, according to an embodiment of the
system described herein.

FIG. 4 is a schematic illustration showing a storage system
with nested hypervisors according to another embodiment of
the system described herein.

FIG. 5 is a flow diagram showing processing for operating
a hypervisor and a guest operating system according to vari-
ous embodiments of the system described herein.

FIG. 6 is a flow diagram showing processing for operating
nested hypervisors according to an embodiment of the system
described herein.

FIG. 7 is a schematic illustration of a cut-through-device
subsystem used in connection with a container hypervisor
according to an embodiment of the system described herein.

FIG. 8 is a schematic illustration showing a storage system
with fractional SMP capabilities extended to one or more
guest operating systems according to an embodiment of the
system described herein.

FIG. 9 is a flow diagram showing processes for fractional
resource scheduling with multiple hypervisors according to
an embodiment of the system described herein.

DETAILED DESCRIPTION OF VARIOUS
EMBODIMENTS

FIG. 1 is a schematic illustration of a storage system 20
showing a relationship between a host 22 and a storage device
24 that may be used in connection with an embodiment of the
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system described herein. In an embodiment, the storage
device 24 may be a Symmetrix storage system produced by
EMC Corporation of Hopkinton, Mass. Also illustrated is
another (remote) storage device 26 that may be similar to, or
different from, the storage device 24 and may, in various
embodiments, be coupled to the storage device 24, for
example, via a network. The host 22 reads and writes data
from and to the storage device 24 via an I/O module (IOM)
28, which facilitates the interface between the host 22 and the
storage device 24. Although the diagram 20 only shows one
host 22 and one IOM 28, it will be appreciated by one of
ordinary skill in the art that multiple IOM’s may be used and
that one or more IOM’s may have one or more hosts coupled
thereto.

In an embodiment of the system described herein, data
from the storage device 24 may be copied to the remote
storage device 26 via a link 29. For example, the transfer of
data may be part of a data mirroring or replication process,
that causes the data on the remote storage device 26 to be
identical to the data on the storage device 24. Although only
the one link 29 is shown, it is possible to have additional links
between the storage devices 24, 26 and to have links between
one or both of the storage devices 24, 26 and other storage
devices (not shown). The storage device 24 may include a first
plurality of adapter units (RA’s) 30a, 305, 30c. The RA’s
30a-30c may be coupled to the link 29 and be similar to the
I/O Module 28, but are used to transfer data between the
storage devices 24, 26.

The storage device 24 may include one or more disks, each
containing a different portion of data stored on each of the
storage device 24. FIG. 1 shows the storage device 24 includ-
ing a plurality of disks 33a, 335, 33¢. The storage device
(and/or remote storage device 26) may be provided as a stand-
alone device coupled to the host 22 as shown in FIG. 1 or,
alternatively, the storage device 24 (and/or remote storage
device 26) may be part of a storage area network (SAN) that
includes a plurality of other storage devices as well as routers,
network connections, etc. The storage devices may be
coupled to a SAN fabric and/or be part of a SAN fabric. The
system described herein may be implemented using software,
hardware, and/or a combination of software and hardware
where software may be stored in a computer readable medium
and executed by one or more processors.

Each of the disks 33a-33¢ may be coupled to a correspond-
ing disk adapter unit (DA) 35a, 355, 35¢ that provides data to
a corresponding one of the disks 33a-33¢ and receives data
from a corresponding one of the disks 33a-33¢. An internal
data path exists between the DA’s 35a-35¢, the TOM 28 and
the RA’s 30a-30c¢ of the storage device 24. Note that, in other
embodiments, it is possible for more than one disk to be
serviced by a DA and that it is possible for more than one DA
to service a disk. The storage device 24 may also include a
global memory 37 that may be used to facilitate data trans-
ferred between the DA’s 35a-35¢, the IOM 28 and the RA’s
30a-30c. The memory 37 may contain tasks that are to be
performed by one or more of the DA’s 35a-35¢, the IOM 28
and the RA’s 30a-30c¢, and a cache for data fetched from one
or more of the disks 33a4-33c.

The storage space in the storage device 24 that corresponds
to the disks 33a-33¢ may be subdivided into a plurality of
volumes or logical devices. The logical devices may or may
not correspond to the physical storage space of the disks
33a-33¢. Thus, for example, the disk 33¢ may contain a
plurality of logical devices or, alternatively, a single logical
device could span both of the disks 33a, 335. Similarly, the
storage space for the remote storage device 26 that comprises
the disks 34a-34¢ may be subdivided into a plurality of vol-
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6

umes or logical devices, where each of the logical devices
may or may not correspond to one or more of the disks 34a
34c.

FIG. 2 is a schematic diagram 40 illustrating an embodi-
ment of the storage device 24 where each of a plurality of
directors 42a-42n are coupled to the memory 37. Each of the
directors 42a-42n represents at least one of the IOM 28, RAs
30a-30c, or DAs 35a-35¢. The diagram 40 also shows an
optional communication module (CM) 44 that provides an
alternative communication path between the directors 42a-
42n. Each of the directors 42a-42n may be coupled to the CM
44 so that any one of the directors 42a-42n may send a
message and/or data to any other one of the directors 42a-42n
without needing to go through the memory 26. The CM 44
may be implemented using conventional MUX/router tech-
nology where a sending one of the directors 42a-42n provides
an appropriate address to cause a message and/or data to be
received by an intended receiving one of the directors 42a-
42n. Some or all of the functionality of the CM 44 may be
implemented using one or more of the directors 42a-42r so
that, for example, the directors 42a-42r may be intercon-
nected directly with the interconnection functionality being
provided on each of the directors 42a-42x. In addition, a
sending one of the directors 42a-42n may be able to broadcast
a message to all of the other directors 42a-42n at the same
time.

In some embodiments, one or more of the directors 42a-
42r may have multiple processor systems thereon and thus
may be able to perform functions for multiple directors. In
some embodiments, at least one of the directors 42a-42n
having multiple processor systems thereon may simulta-
neously perform the functions of at least two different types
of directors (e.g., an IOM and a DA). Furthermore, in some
embodiments, at least one of the directors 42a-42n having
multiple processor systems thereon may simultaneously per-
form the functions of at least one type of director and perform
other processing with the other processing system. In addi-
tion, all or at least part of the global memory 37 may be
provided on one or more of the directors 42a-42» and shared
with other ones of the directors 42a-42x. In an embodiment,
the features discussed in connection with the storage device
24 may be provided as one or more director boards having
CPUs, memory (e.g., DRAM, etc.) and interfaces with Input/
Output (I/O) modules, and in which multiple director boards
may be networked together via a communications network,
such as, for example, an internal Ethernet communications
network, a serial rapid I/O (SRIO) fabric and/or Infiniband
fabric (v3).

FIG. 3 is a schematic illustration showing hardware and
software layers for a storage system 100, including indepen-
dent hypervisors as threads, according to an embodiment of
the system described herein. In an embodiment, the storage
system 100 may be a Symmetrix storage system produced by
EMC Corporation of Hopkinton, Mass. A hardware layer 110
includes hardware components for the storage system 100,
such as memory and processors (CPUs) and/or other compo-
nents like that discussed in connection with FIGS. 1 and 2. A
storage system operating system (OS) layer 120 is shown as
the operating system for the storage system 100. In an
embodiment, the OS layer 120 may be a Symmetrix storage
system OS, such as Enginuity, with a Symm/K kernel that
provides OS services and scheduling. Other operating sys-
tems may be used, such as the Linux operating system.

An instance is a single binary image of the OS that per-
forms a specific set of operations. In an embodiment, there
may be up to eight instances configured on a director board at
any given time. A thread is a separately schedulable set of
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code or process of an instance. Threads may be co-operative
and/or preemptive, and may be scheduled by the OS. An
instance may run on more than one core, that is, an instance
may provide a symmetric multiprocessing (SMP) environ-
ment to threads running within the instance.

According to the system described herein, a thread may be
provided that runs as a hypervisor within the storage system
OS environment. As previously discussed, a hypervisor is a
software implementation providing a software virtualization
environment in which other software may run with the
appearance of having full access to the underlying system
hardware, but in which such access is actually under the
complete control of the hypervisor. The hypervisor running as
the OS thread may be called a container hypervisor. The
container hypervisor may manage a virtual hardware envi-
ronment for a guest operating system (Guest OS), and, in an
embodiment, the container hypervisor may run multiple OS
threads (e.g., 1 to N threads) within a single instance. The
Guest OS is an operating system that may be loaded by a
thread of the container hypervisor, and runs in the virtual
environment provided by the container hypervisor. The Guest
OS may also access real hardware devices attached to a direc-
tor board using a virtual device provided by the container
hypervisor or via a peripheral component interconnect (PCI)
pass-through device/driver. There may be multiple container
hypervisors running within a single instance at the same time.
There may also be multiple container hypervisors running
within different instances on the same director board at the
same time.

In FIG. 3, a hypervisor layer 130 is shown as including
hypervisor-A 131 and hypervisor-B 132 that may be
examples of container hypervisors in accordance with the
system described herein. Each of the container hypervisors
131, 132 may run as threads embedded within the storage
system OS operating environment (the storage system OS
120). The container hypervisor 131 is shown running as a
thread t, and may be running independently of the container
hypervisor 132. The container hypervisor 132 is shown run-
ning two threads t, and t,. These threads may run indepen-
dently of each other as well as the thread t, of the container
hypervisor 131. The independent operation of the threads t,
and t, of the container hypervisor 132 is shown schematically
with a dashed line. In each case, the threads t,, t; and t, of'the
container hypervisors 131, 132 may run as threads of one or
more instances of the storage system OS 120. For example, in
an embodiment, the container hypervisors 131, 132 may be
threads running as part of an Enginuity instance or a Linux
instance. The container hypervisors 131, 132 may be sched-
uled like any other thread and may be preempted and inter-
rupted as well as started and stopped. Advantageously, since
the container hypervisors 131, 132 runs as threads within the
storage system OS environment, physical resource sharing of
the underlying hardware is already provided for according to
the storage system OS scheduling.

According to an embodiment of the system described
herein, a Guest OS 140 is loaded using the thread t, of the
container hypervisor-A 131 and, for example, runs an appli-
cation in the virtual environment provided thereby. As shown,
a Guest OS 151 may be loaded using independent threads t;,
t, of the container hypervisor 132. As further discussed else-
where herein, threads t,, t; and t, may all be run indepen-
dently of each other. The ability to run a container hypervisor
as a storage system OS thread provides that the storage sys-
tem 100 may run with no performance penalty until the con-
tainer hypervisor thread is enabled. Even when the hypervisor
thread is enabled and running an application in a Guest OS,
the performance impact may be controlled. Additionally,
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developments in physical hardware may be accommodated
through a software development process that is decoupled
from modifications to the hypervisor code. Accordingly,
releases of new storage device code, hypervisor code and
Guest OS, and applications code may all be realized in an
independent manner.

In various embodiments, the container hypervisors 131,
132 may each provide for one or more of the following
features: boot a Guest OS; run the Guest OS as a storage
system OS thread (e.g., Symm/K); be scheduled, preempt-
able, etc.; reset the Guest OS without restarting the instance;
allow the Guest OS to access storage devices (e.g., Symme-
trix) using a Cut-through Device (CTD), as further discussed
elsewhere herein; and allow the Guest OS to access the 1/0O
Modules using a PCI pass-through device.

FIG. 4 is a schematic illustration showing a storage system
200 with nested hypervisors according to another embodi-
ment of the system described herein. Like the storage system
100 previously discussed, the storage system 200 may
include a hardware layer 210 and a storage system OS layer
220. A Guest OS 240 may be loaded using the thread t, of a
container hypervisor (hypervisor-A) 231. As shown in con-
nection with a container hypervisor (hypervisor-B) 232, the
container hypervisor 232 may host one or more other hyper-
visors (hypervisor-C 250). In various embodiments, the
hypervisor-C 250 may be another container hypervisor and/
or may be another type of hypervisor, such as VMware’s
ESXi. The ability to host another hypervisor (hypervisor-C
250), as a nested hypervisor, provides the capability of the
system 200 to host any guest operating system, such as Guest
OS’s 251, 252 (e.g., Linux) that may be hosted by the hyper-
visor 250 (e.g., ESXi) itself without needing to modify the
code of the container hypervisor 232. It is noted that addi-
tional layers of hypervisors may further be nested in accor-
dance with the system described herein. By embedding
hypervisors within hypervisors in a storage system environ-
ment in the manner according to the system described herein,
physical resource sharing may be provided using the storage
system OS scheduling and, thereby, resource trampling that
may occur with the addition of another hypervisor, without
such system OS scheduling, is avoided.

FIG. 5 is a flow diagram 300 showing processing for oper-
ating a hypervisor and a Guest OS according to various
embodiments of the system described herein. At a step 302, a
container hypervisor is run as a thread of an underlying OS,
for example, a storage system OS, such as Enginuity with
Symm/K operating a Symmetrix storage system or the Linux
operating system. After the step 302, processing proceeds to
a step 304 where a Guest OS is loaded using the container
hypervisor based on the thread of the storage system OS. The
container hypervisor may be run independently of the Guest
OS and independently of other hypervisors running as other
threads of the storage system OS. After the step 304, process-
ing proceeds to a step 306 where the hypervisor accesses
resources according to a scheduler of the storage system OS
and in connection with resource requirements of the Guest
OS (and/or an application of the Guest OS). As further dis-
cussed elsewhere herein, the hypervisor may share resources
with the other hypervisors according to the scheduling of the
storage system OS. In an embodiment, the container hyper-
visor may be embedded with the storage system OS. As
further discussed elsewhere herein, code of container hyper-
visor may be modified independently of code of the Guest OS
and/or code of other hypervisors running as threads of the
storage system OS. After the step 306, processing is com-
plete. One or more of the above-noted processing steps may
be implemented via executable code stored on a non-transi-
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tory computer readable medium and executable by at least
one processor according to an embodiment of the system
described herein.

FIG. 6 is a flow diagram 350 showing processing for oper-
ating nested hypervisors according to an embodiment of the
system described herein. At a step 352, a container hypervisor
(e.g., afirsthypervisor) is run as a thread of an underlying OS,
for example, a storage system OS, such as Enginuity with
Symm/K operating a Symmetrix storage system. After the
step 352, processing proceeds to a step 354, where a second
hypervisor is run nested, and/or embedded within, the first
hypervisor (the container hypervisor). In various embodi-
ments, the second hypervisor may be a known hypervisor
(e.g., ESXi) and/or may be another container hypervisor.
Other hypervisors may be further nested in accordance with
the system described herein. After the step 354, processing
proceeds to a step 356, where a Guest OS is loaded using the
first (container) hypervisor and the second hypervisor. After
the step 356, processing is complete. One or more of the
above-noted processing steps may be implemented via
executable code stored on a non-transitory computer readable
medium and executable by at least one processor according to
an embodiment of the system described herein.

According to the system described herein, when the con-
tainer hypervisor starts the Guest OS, the Guest OS may run
in the context of the container hypervisor. The container
hypervisor may access all of the Guest’s memory while the
Guest may only access the memory given to it by the con-
tainer hypervisor. In order to avoid time-consuming calls that
cause an exit from a VM (e.g., vmexit) as a result of certain
Guest OS activities, virtual PCI devices may be used in con-
nection with the container hypervisor. A virtual PCI device
looks and behaves like normal PCI hardware to the Guest OS.
Guest OS access to memory mapped /O (MMIO) space does
not necessarily cause a vmexit, depending on the virtual PCI
device code of the container hypervisor. To allow I/O with the
storage system (e.g., Symmetrix), a Cut-through Device
(CTD) may be used that may be a virtual PCI device used in
connection with the container hypervisor.

FIG. 7 is a schematic illustration of a CTD device sub-
system 400 used in connection with a container hypervisor
according to an embodiment of the system described herein.
A protocol of the CTD device 400 may be built around small
computer system interface (SCSI) control data blocks
(CDBs). In an embodiment, the CTD device protocol may
include data structures for scatter and gather of entry arrays,
client requests and/or server completions. The CTD device
400 is shown operating in connection with container hyper-
visor context 410 that may include operation with one or more
container hypervisor contexts 411-413. The CTD device 400
may use a particular driver (the CTD Client 415) in a Guest
OS 405 loaded in connection with the container hypervisor.
The CTD device 400 may have a further sub-system (the CTD
Server 425) that runs in its own context (the CTD Server
Context 420). There may be a virtual PCI device: vCTDring
416, and/or other application programming interfaces (APIs)
used, such as vINT13 API 417 and vSATA API 418. Each
device or APl may have a driver (vCTDring Driver 421,
vINT13 Driver 422, and vSATA driver 423) to interface there-
with. The interaction of the vCTDring 416 of the CTD device
400 with the Guest OS 405 is shown schematically with arrow
401. In embodiments, there may be separate threads to ser-
vice each driver that runs in its own context. Other drivers,
such as CTD_MGT Driver 426 (with associated components
426a, 426b) and CTD_SYMM Driver 427, may be included
in connection with operation of the CTD Server for manage-
ment and control in connection with other contexts 430,
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including a common device interface (CDI) layer 431 for the
storage system and/or other console routines 432.

According to another embodiment, by using a thread of a
container hypervisor in the storage system OS environment
(e.g., Enginuity running Symm/K), it is possible for a Guest
OS to operate in several modes. The container hypervisor
thread may inherit the same number of CPU cores as that of
the OS instance and may run as a single thread on those cores
when active. However, since the container hypervisor is run-
ning as a thread, rather than being scheduled as an OS
instance, as described elsewhere herein, other OS threads
may also continue to run on other cores in the same SMP
environment. The use of the OS scheduling algorithms (e.g.,
Symm/K) for scheduling the threads of the container hyper-
visors thus provide the ability to schedule fractions of CPU
time on multiple cores for the Guest OS’s. Furthermore, it is
possible for the container hypervisor to allocate fewer virtual
cores than physical cores available to the instance, and allow
the Guest OS to operate SMP on those cores while still allow-
ing other OS threads to operate with full CPU core resources,
and to adjust the CPU allocation between Guest OS’s and
other threads. In an embodiment, in a VMAX system from
EMC Corporation of Hopkinton, Mass., the granularity ofthe
CPU time scheduling according to the system described
herein may be on the order of 500 microseconds or less.

FIG. 8 is a schematic illustration showing a storage system
500 with fractional SMP capabilities extended to one or more
Guest OS’s 540, 551, 552 according to an embodiment of the
system described herein. The storage system 500 includes a
hardware layer 510, a storage system OS layer 520 and a
container hypervisor layer 530, with a container hypervisor
531 (hypervisor-A) and a container hypervisor 532 (hypervi-
sor-B) illustrated by way of example. The Guest OS’s 540,
551 and 552 may be loaded using the container hypervisors
531, 532. The container hypervisors 531, 532 map virtual
CPU cores to the physical CPU cores 511, 512 of the hard-
ware layer 510. That is, in accordance with the system
described herein, the one or more Guest OS’s may only have
access to a different number of available CPU cores (virtual
CPU cores) than are available as physical CPU cores on the
hardware 510. Through the use of the container hypervisors
531, 532 running as storage system OS threads t,, t;, and t,
(rather than being scheduled as storage system OS instances),
the system described herein provides for the ability to sched-
ule fractions of CPU time on multiple cores for one or more of
the Guest OS’s 540, 551, 552 according to the scheduling
algorithms of the storage system OS components (e.g.,
Symm/K).

The scheduling of fractional CPU time on the physical
CPU cores 511, 512 is shown schematically as fractions
511a-c and 512a-c of each of the CPU cores 511, 512. Each
of the threads t, t;, and t, of the container hypervisors 531,
532 may operate in an SMP regime on multiple ones of the
cores 511, 512 while allowing others of the threads to also
operate with full CPU core resources. The system described
herein provides for flexible control of physical CPU alloca-
tion between Guest OS’s 540, 551, 552 without causing one
or more of the Guest OS’s 540, 551, 552 to become inactive
due to resource overlaps. In this way, the Guest OS’s 540,
551, 552 may run based on the threads of the container hyper-
visors 531, 532 using varying amounts of CPU time per CPU
core in an SMP regime.

FIG. 9 is a flow diagram 600 showing processes for frac-
tional resource scheduling with multiple hypervisors accord-
ing to an embodiment of the system described herein. At a
step 602, a first container hypervisor is run as a thread of an
underlying OS, for example, a storage system OS, such as
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Enginuity with Symm/K operating a Symmetrix storage sys-
tem. After the step 602, processing proceeds to a step 604
where a first Guest OS is loaded using the first container
hypervisor based on the thread of the storage system OS.
After the step 604, processing proceeds to a step 606 where a
second container hypervisor is run as a thread of the storage
system OS. After the step 606, processing proceeds to a step
608 where a second Guest OS is loaded using the second
container hypervisor based on the thread of the storage sys-
tem OS. Itis noted that, in various embodiments, the first and
second container hypervisors may be run independently of
each other and may be run independently of the first and
second Guest OS’s, such that modifications to code of each of
the hypervisors may be done independently of each other,
independently of modifications to the Guest OS’s and/or
independently of modifications to code of the storage system
OS.

After the step 608, processing proceeds to a step 610 where
the first and second container hypervisors may share
resources according to fractional resource sharing scheduled
by the scheduler (Symm/K) of the storage system OS and in
connection with separate resource requirements of the first
and second Guest OS’s (and/or an application of the first and
second Guest OS’s). It is noted that, in various embodiments,
the fractional resource scheduling depicted in illustration 600
may be implemented according to systems like that shown in
FIGS. 3 and 4. One or more of the above-noted processing
steps may be implemented via executable code stored on a
non-transitory computer readable medium and executable by
at least one processor according to an embodiment of the
system described herein.

Various embodiments discussed herein may be combined
with each other in appropriate combinations in connection
with the system described herein. Additionally, in some
instances, the order of steps in the flowcharts, flow diagrams
and/or described flow processing may be modified, where
appropriate. Further, various aspects of the system described
herein may be implemented using software, hardware, acom-
bination of software and hardware and/or other computer-
implemented modules or devices having the described fea-
tures and performing the described functions. Software
implementations of the system described herein may include
executable code that is stored in a computer readable medium
and executed by one or more processors. The computer read-
able medium may include a computer hard drive, ROM,
RAM, flash memory, portable computer storage media such
as a CD-ROM, a DVD-ROM, a flash drive and/or other drive
with, for example, a universal serial bus (USB) interface,
and/or any other appropriate tangible or non-transitory com-
puter readable medium or computer memory on which
executable code may be stored and executed by a processor.
The system described herein may be used in connection with
any appropriate operating system.

Other embodiments of the invention will be apparent to
those skilled in the art from a consideration of the specifica-
tion or practice of the invention disclosed herein. It is
intended that the specification and examples be considered as
exemplary only, with the true scope and spirit of the invention
being indicated by the following claims.

What is claimed is:

1. A method for operating a system having a plurality of
hypervisors, comprising:

running a first hypervisor as a first thread of an underlying

operating system, the underlying operating system
scheduling access to processing resources;

running a second hypervisor that is nested with the first

hypervisor, the second hypervisor being hosted by, and
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running on top of, the first hypervisor, wherein the sec-
ond hypervisor is run to provide a virtualization envi-
ronment that is compatible with a guest operating sys-
tem, wherein the second hypervisor provides for running
the guest operating system in the virtualization environ-
ment without modifying code of the first hypervisor, and
wherein the guest operating system is presented with an
appearance of having full access to the processing
resources of the underlying operating system while
actual access of the guest operating system to the pro-
cessing resources is controlled by the first hypervisor;

loading the guest operating system on top of the second
hypervisor; and

running at least one other hypervisor as another thread of

the underlying operating system, wherein the at least one
other hypervisor runs independently of the first hyper-
visor, wherein the first hypervisor accesses the process-
ing resources of the underlying operating system in con-
nection with resource requirements of the guest
operating system and according to scheduling processes
for the processing resources performed by the underly-
ing operating system, wherein access to the processing
resources by the first hypervisor running as the first
thread of the underlying operating system and access to
the processing resources by the at least one other hyper-
visor running as another thread of the underlying oper-
ating system and running independently of the first
hypervisor are scheduled like any other thread running
on the underlying operating system, and wherein physi-
cal resource sharing of the processing resources is
thereby provided according to the scheduling processes
of the underlying operating system, wherein the under-
lying operating system is an operating system of a stor-
age system.

2. The method according to claim 1, further comprising:

modifying code of the first hypervisor independently of

code of the guest operating system.

3. The method according to claim 1, wherein another guest
operating system is loaded on top of the at least one other
hypervisor.

4. The method according to claim 1, wherein the process-
ing resources include all available central processing units
(CPUs) of a hardware layer of the storage system.

5. A method for operating a system having a plurality of
hypervisors, comprising:

running a first hypervisor as a first thread of an underlying

operating system, the underlying operating system
scheduling access to processing resources;
running a second hypervisor that is nested with the first
hypervisor, the second hypervisor being hosted by, and
running on to of; the first hypervisor, wherein the second
hypervisor is run to provide a virtualization environment
that is compatible with a guest operating system,
wherein the second hypervisor provides for running the
guest operating system in the virtualization environment
without modifying code of the first hypervisor, and
wherein the guest operating system is presented with an
appearance of having full access to the processing
resources of the underlying operating system while
actual access of the guest operating system to the pro-
cessing resources is controlled by the first hypervisor;

loading the guest operating system on top of the second
hypervisor; and

running at least one other hypervisor as another thread of

the underlying operating system, wherein the at least one
other hypervisor runs independently of the first hyper-
visor, wherein the first hypervisor accesses the process-
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ing resources of the underlying operating system in con-
nection with resource requirements of the guest
operating system and according to scheduling processes
for the processing resources performed by the underly-
ing operating system, wherein access to the processing
resources by the first hypervisor running as the first
thread of the underlying operating system and access to
the processing resources by the at least one other hyper-
visor running as another thread of the underlying oper-
ating system and running independently of the first
hypervisor are scheduled like any other thread running
on the underlying operating system, and wherein physi-
cal resource sharing of the processing resources is
thereby provided according to the scheduling processes
of the underlying operating system, wherein the first
hypervisor is embedded with a storage system.

6. The method according to claim 5, further comprising:

modifying code of the first hypervisor independently of

code of the guest operating system.
7. The method according to claim 5, wherein another guest
operating system is loaded on top of the at least one other
hypervisor.
8. The method according to claim 5, wherein the process-
ing resources include all available central processing units
(CPUs) of a hardware layer of the storage system.
9. A non-transitory computer readable medium storing
software for operating a system having a plurality of hyper-
visors, the software comprising:
executable code that runs a first hypervisor as a first thread
of an underlying operating system, the underlying oper-
ating system scheduling access to processing resources;

executable code that runs a second hypervisor that is nested
with the first hypervisor, the second hypervisor being
hosted by, and running on top of, the first hypervisor,
wherein the second hypervisor is run to provide a virtu-
alization environment that is compatible with a guest
operating system, wherein the second hypervisor pro-
vides for running the guest operating system in the vir-
tualization environment without modifying code of the
first hypervisor, and wherein the guest operating system
is presented with an appearance of having full access to
the processing resources of the underlying operating
system while actual access of the guest operating system
to the processing resources is controlled by the first
hypervisor;

executable code that loads the guest operating system on

top of the second hypervisor; and

executable code that runs at least one other hypervisor as

another thread of the underlying operating system,
wherein the at least one other hypervisor runs indepen-
dently of the first hypervisor; wherein the first hypervi-
sor accesses the processing resources of the underlying
operating system in connection with resource require-
ments of the guest operating system and according to
scheduling processes for the processing resources per-
formed by the underlying operating system, wherein
access to the processing resources by the firsthypervisor
running as the first thread of the underlying operating
system and access to the processing resources by the at
least one other hypervisor running as another thread of
the underlying operating system and running indepen-
dently of the first hypervisor are scheduled like any other
thread running on the underlying operating system, and
wherein physical resource sharing of the processing
resources is thereby provided according to the schedul-
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ing processes of the underlying operating system,
wherein the underlying operating system is an operating
system of a storage system.

10. The non-transitory computer readable medium accord-
ing to claim 9, wherein the software further comprises:

executable code that modifies code of the first hypervisor

independently of code of the guest operating system.
11. The non-transitory computer readable medium accord-
ing to claim 9, wherein another guest operating system is
loaded on top of' the at least one other hypervisor, and wherein
the at least one other hypervisor runs independently of the
first hypervisor.
12. The non-transitory computer readable medium accord-
ing to claim 9, wherein the processing resources include all
available central processing units (CPUs) of a hardware layer
of the storage system.
13. A non-transitory computer readable medium storing
software for operating a system having a plurality of hyper-
visors, the software comprising:
executable code that runs a first hypervisor as a first thread
of an underlying operating system, the underlying oper-
ating system scheduling access to processing resources;

executable code that runs a second hypervisor that is nested
with the first hypervisor, the second hypervisor being
hosted by, and running on to of, the first hypervisor,
wherein the second hypervisor is run to provide a virtu-
alization environment that is compatible with a guest
operating system, wherein the second hypervisor pro-
vides for running the guest operating system in the vir-
tualization environment without modifying code of the
first hypervisor, and wherein the guest operating system
is presented with an appearance of having full access to
the processing resources of the underlying operating
system while actual access of the guest operating system
to the processing resources is controlled by the first
hypervisor;

executable code that loads the guest operating system on

top of the second hypervisor; and

executable code that runs at least one other hypervisor as

another thread of the underlying operating system,
wherein the at least one other hypervisor runs indepen-
dently of the first hypervisor; wherein the first hypervi-
sor accesses the processing resources of the underlying
operating system in connection with resource require-
ments of the guest operating system and according to
scheduling processes for the processing resources per-
formed by the underlying operating system, wherein
access to the processing resources by the firsthypervisor
running as the first thread of the underlying operating
system and access to the processing resources by the at
least one other hypervisor running as another thread of
the underlying operating system and running indepen-
dently ofthe first hypervisor are scheduled like any other
thread running on the underlying operating system, and
wherein physical resource sharing of the processing
resources is thereby provided according to the schedul-
ing processes of the underlying operating system,
wherein the first hypervisor is embedded with a storage
system.

14. The non-transitory computer readable medium accord-
ing to claim 13, wherein the software further comprises:

executable code that modifies code of the first hypervisor

independently of code of the guest operating system.

15. The non-transitory computer readable medium accord-
ing to claim 13, wherein another guest operating system is
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loaded on top of the at least one other hypervisor, and wherein
the at least one other hypervisor runs independently of the
first hypervisor.

16. The non-transitory computer readable medium accord-
ing to claim 13, wherein the processing resources include all
available central processing units (CPUs) of a hardware layer
of the storage system.

17. A system using hypervisors, comprising:

at least one processor providing processing resources for

an underlying operating system;

a computer-readable medium storing software for operat-

ing the system, the software including:

executable code that runs a first hypervisor as a first
thread of the underlying operating system, the under-
lying operating system scheduling access to process-
ing resources;

executable code that runs a second hypervisor that is
nested with the first hypervisor, the second hypervisor
being hosted by, and running on top of, the first hyper-
visor, wherein the second hypervisor is run to provide
a virtualization environment that is compatible with a
guest operating system, wherein the second hypervi-
sor provides for running the guest operating system in
the virtualization environment without moditying
code of the first hypervisor, and wherein the guest
operating system is presented with an appearance of
having full access to the processing resources of the
underlying operating system while actual access of
the guest operating system to the processing resources
is controlled by the first hypervisor; and

executable code that loads the guest operating system on
top of the second hypervisor; and

executable code that runs at least one other hypervisor as
another thread of the underlying operating system,
wherein the at least one other hypervisor runs inde-
pendently of the first hypervisor, wherein the first
hypervisor accesses the processing resources of the
underlying operating system in connection with
resource requirements of the guest operating system
and according to scheduling processes for the pro-
cessing resources performed by the underlying oper-
ating system, wherein access to the processing
resources by the first hypervisor running as the first
thread of the underlying operating system and access
to the processing resources by the at least one other
hypervisor running as another thread of the underly-
ing operating system and running independently of
the firsthypervisor are scheduled like any other thread
running on the underlying operating system, and
wherein physical resource sharing of the processing
resources is thereby provided according to the sched-
uling processes of the underlying operating system,
wherein the underlying operating system is an oper-
ating system of a storage system.

18. The system according to claim 17, wherein the process-
ing resources include all available central processing units
(CPUs) of a hardware layer of the storage system.

19. The system according to claim 17, wherein another
guest operating system is loaded on top of the at least one
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other hypervisor, and wherein the at least one other hypervi-
sor runs independently of the first hypervisor.

20. A system using hypervisors, comprising:

at least one processor providing processing resources for

an underlying operating system;

a computer-readable medium storing software for operat-

ing the system, the software including:

executable code that runs a first hypervisor as a first
thread of the underlying operating system, the under-
lying operating system scheduling access to process-
ing resources;

executable code that runs a second hypervisor that is
nested with the first hypervisor, the second hypervisor
being hosted by, and running on top of, the first hyper-
visor, wherein the second hypervisor is run to provide
avirtualization environment that is compatible with a
guest operating system, wherein the second hypervi-
sor provides for running the guest operating system in
the virtualization environment without modifying
code of the first hypervisor, and wherein the guest
operating system is presented with an appearance of
having full access to the processing resources of the
underlying operating system while actual access of
the guest operating system to the processing resources
is controlled by the first hypervisor; and

executable code that loads the guest operating system on
top of the second hypervisor; and

executable code that runs at least one other hypervisor as
another thread of the underlying operating system,
wherein the at least one other hypervisor runs inde-
pendently of the first hypervisor, wherein the first
hypervisor accesses the processing resources of the
underlying operating system in connection with
resource requirements of the guest operating system
and according to scheduling processes for the pro-
cessing resources performed by the underlying oper-
ating system, wherein access to the processing
resources by the first hypervisor running as the first
thread of the underlying operating system and access
to the processing resources by the at least one other
hypervisor running as another thread of the underly-
ing operating system and running independently of
the firsthypervisor are scheduled like any other thread
running on the underlying operating system, and
wherein physical resource sharing of the processing
resources is thereby provided according to the sched-
uling processes of the underlying operating system,
wherein the first hypervisor is embedded with a stor-
age system.

21. The system according to claim 20, wherein the process-
ing resources include all available central processing units
(CPUs) of a hardware layer of the storage system.

22. The system according to claim 20, wherein another
guest operating system is loaded on top of the at least one
other hypervisor, and wherein the at least one other hypervi-
sor runs independently of the first hypervisor.
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